22 September Preview Rapid Science Synthesis*

Questions A, C, D, E – Emissions: P-3 data

• Measured isoprene concentrations vs. biogenics inventory (Carsten Warneke)

Questions A, C, D, E – Emissions: P-3 data

• **NO_x point sources (Tom Ryerson)**

Questions A, C, D, E – Emissions: SOF data

• Ship channel emissions (Johan Mellqvist)

Questions G, H – Regional Background Aerosol: Satellite data

• Regional and local biomass burning (Brad Pierce)

*http://esrl.noaa.gov/csd/2006/rss/

22 September Preview Rapid Science Synthesis*

Questions A, C, D, E – Emissions: P-3 data

Measured isoprene concentrations vs. • (Carsten Warneke)

Questions A, C, D, E – Emission

NO_x point sources (7 p.) Cyersö

Questions A, C, D, F mission **F** data

Johan Mellqvist) Ship cha

Questi al Background Aerosol: Satellite data cal biomass burning (Brad Pierce)

*http://esrl.noaa.gov/csd/2006/rss/

Questions A, C, D, E – Emissions: P-3 data

• Measured isoprene concentrations vs. biogenics inventory (Carsten Warneke)

Isoprene measurements on the NOAA WP-3 using PTR-MS

Carsten Warneke Lori Del Negro Joost de Gouw

PTR-MS

Proton-Transfer-Reaction Mass Spectrometry

15 volatile organic compounds (VOCs) every 16 seconds

Aromatics: urban and industrial marker Oxygenates: chemical transformation Acetonitrile: biomass burning marker

Biogenics: isoprene, methyl vinyl ketone+methacrolein sum monoterpenes

PTR-MS and LPAS in the NOAA WP-3

LPAS: fast ethylene measurements

Flight: 09/16/2006

NE Texas: Martin Lake PP plume over forest

Variability from emissions (Instrument Precision is about 50 pptv)

Increase during day: isoprene emissions increase (temperature and light dependence)

MVK+MACR: fast chemistry

Monoterpenes were very small

Evidence for rapid vertical transport

BEIS3 isoprene emissions potential

East Texas: high emissions and warm temperatures

Questions A, C, D, E – Emissions: P-3 data

• **NO_x point sources (Tom Ryerson)**

A quick look at P-3 data:

Point sources in NE Texas

Flyby of an instrumented tower in Moody, TX

Changes in W.A. Parish emissions since 2000

Ga. Tech HO_x measurements in plumes

Point sources in NE Texas

NE Texas: power plant CO emissions

SO₂ plotted along flight track

NE Texas: power plant CO emissions

SO₂ plotted along flight track

NE Texas: power plant CO emissions (Nicks et al., J. Env. Monitoring, 5, pp. 35-39 (2003)

TexAQS II 09/16/2006

NE Texas: power plant CO emissions (Nicks et al., J. Env. Monitoring, 5, pp. 35-39 (2003)

NOAA Global Monitoring Division instrumented tall tower - Moody, TX

CO₂, CO, O₃, and met. at 496 meters on the KWKT tower

NOAA Global Monitoring Division instrumented tall tower - Moody, TX

NOAA Global Monitoring Division instrumented tall tower - Moody, TX

Tower:

CO₂ 378.3 ±0.1

NE Texas: NOx changes since 2000

NE Texas: NOx changes since 2000

TexAQS II 09/19/2006

Peroxy radicals and ozone formation

Greg Huey/David Tanner (Georgia Tech) H_2SO_4 and HO_x measurements on the NOAA P-3

Peroxy radicals and ozone formation

Greg Huey/David Tanner (Georgia Tech) H_2SO_4 and HO_x measurements on the NOAA P-3

Peroxy radicals and ozone formation

Greg Huey/David Tanner (Georgia Tech) H_2SO_4 and HO_x measurements on the NOAA P-3

- New particle formation rates
- Aerosol acidity
- Ozone
 production
 dependence
 on [NOx]
- Direct estimates
 of ozone
 production
 rates

Questions A, C, D, E – Emissions: SOF data

• Ship channel emissions (Johan Mellqvist)

Solar Occultation Flux (SOF) measurements around the Houston Ship Channel and other source areas,

Johan Mellqvist, Jerker Samuelsson and Claudia Rivera Radio and Space Chalmers University of Technology Göteborg, Sweden jome@chalmers.se

Barry Lefer/Monica Patel Institute of Multi-Dimensional Air Quality Study University of Houston

Funded by HARC/TCEQ

Aim

- Estimate of total emissions (tons/day) of various species (alkanes, ethylene, propylene, butadiene, NO2 and SO2) emitted from the Houston Ship Channel and other source areas, using the Solar Occultation Flux method (SOF) and mobile zenith sky measurements (DOAS)
- Comparison and use of additional information (concentration height profiles, chemical composition) from airborne measurements by the Baylor Aztec (TDEV project, Gillani) and NOAA P3

The Solar Occultation Flux method (SOF) (alkenes & alkanes)

UV/visible zenith sky (NO2, SO2)

System developed for volcanic meaurements (Galle, Johansson et al., Radio and Space, Chalmers)

SOF (Solar Occultation Flux) method

Windprofile measurements with GPS sondes (UH)

> Barry Lefer, Monica Patel & Craig Clements

Error budget*

Retrieval method:	5-10%
Lineparameters	5-10%
Optical artifacts/interference	5-15%
Wind field	15-25%
■ Sum= 20-35%	

* This budget is consistent with validation experiments

Objective : Enclosure of emissions by "box measurements"

In conjunction with the SOF box, airborne measurements have been conducted (TDEV, Gillani et al.)

Date	SOF O : Olefines A : Alkanes	UV NO ₂ SO ₂	Related activities	Wind
30 Aug	HSC box: O	HSC box	Aztec	Ν
31 Aug	HSC-Battleground Rd: O+A	HSC box Battleground Rd Baytown	Aztec	E
1 Sep	HSC-Battleground Rd: O Channelview: O+A	HSC-Battleground Rd Channelview		NE
2 Sep	Texas City: O+A	Texas City		NE
3 Sep	Sweeny (E half of plant) : O+A	Sweeny (total)		E
4 Sep	Baytown : O	HSC box Baytown		NE

Date	SOF O : Olefines A : Alkanes	UV NO ₂ SO ₂	Related activities	Wind
7 Sep	Baytown : O+A	Baytown	Ron Brown on HSC	NE
10 Sep		HSC box		N
11 Sep		HSC box		Ν
13 Sep	HSC box: O+A Baytown: A	HSC box: O+A Baytown: A		N
14 Sep	Texas City: A HSC-Battleground Rd: O+A	Texas City HSC- Battleground Rd		NE
16 Sep		Freeport		S
17 Sep		HSC box		S

Date	SOF O : Olefines A : Alkanes	UV NO ₂ SO ₂	Related activities	Wind
18 Sep		HSC box		NE
19 Sep	HSC box : O+A Belview: O Baytown: O	HSC box Belview	NOAA-P3	N
20 Sep	Texas City: O+A	Texas City	Aztec, NOAA-P3	Е
21 Sep	Sweeny: O+A	Sweeny	NOAA-P3	SW

Some preliminary results

The following values should only be considered in a qualitative manner at this stage Alkane mass downwind of Texas city measured by SOF on september 20 (Measurements in conjunction with airborne measurements (Aztec and P3)

	Compound	Cross sensitivity as mass of Butane	
The alkane	Propane	0.98	
channel is	n-Butane	1.00	
	Ethane	0.26	
sensitive to all	Iso-Butane	1.60	
VUCS?	n-Pentane	1.01	
Knowledge of	Iso-Pentane	1.29	
speciation	Decane	0.74	
therefore	Hexane	0.94	
important	2-Methylpentane	1.05	
(Canisters done	3-Methylpentane	1.02	
by Rannengluck	Cyclohexane	0.21	
	n-Heptane	0.76	
	Octane	0.55	
	Nonane	0.42	
	Toluene	0.04	
	Benzene	0.00	
	Ethylbenzene	0.27	
	1,2,4-TMB	0.00	
	1,3,5-TMB	0.00	
	m+p-xylene	0.03	
	o-xylene	0.10	
	Etene	0.02	

Airborne measurements (Aztec) at Texas city by Baylor university (Alvarez et al.)

Airborne measurements (Aztec) at Texas city by Baylor university (Alvarez et al.)

Ethylene mass downwind of HSC measured by SOF on Aug 30 (Measurements in conjunction with Aztec)

Ethylene mass downwind of HSC measured by SOF on Aug 30 (Measurements in conjunction with Aztec) Log scale

Propene measured by SOF for a N-S traverse from Lynchbury ferry crossing to Laporte airfield (NE wind) Aug 31

Plan

Measurements continue until Oct 2

- Freeport
- Choc Bayou
- HSC-total
- Joint measurements Aztec (1 flight)+P3
- Other, possible on site meas

 During the next months spectroscopic retrievals will be conducted of eten, propene, butadiene, NH3, alkanes and formaldehyde Questions G, H – Regional Background Aerosol: Satellite data

• Regional and local biomass burning (Brad Pierce)

North and South American Influences During September 17, 2006 HSRL CALIPSO Validation/Biomass burning Survey

Synthesis of NASA HSRL, MODIS, CALIPSO, AIRS, and NOAA P3 measurements Using Ensemble trajectories, RAQMS and STEM chemical/aerosol analyses

> Brad Pierce, Chris Hostetler, Rich Ferrare, John Hair, Chieko Kittaka, Jassim Al-Saadi (NASA LaRC) Youhua Tang and Greg Carmichael (University of IOWA) Arlindo da Silva (NASA GSFC/GMAO) Chris Schmidt (CIMSS)

> > With thanks to

David Winker (NASA LaRC), Wallace McMillan (UMBC), John Holloway (NOAA) Dirk Richter, Jim Walega, Petter Weibring and Alan Fried (UCAR) Liam Gumley and Allen Huang (CIMSS), and Lorraine Remer (NASA GSFC)

for providing satellite and insitu data sets used in this analysis

Addressing RSS Science Questions G, H "Background ozone and aerosol concentrations and the role of regional transport"

Philosophy :

Use chemical/aerosol forecast models and Lagrangian trajectory analysis to link local airborne lidar and insitu observations within receptor regions (Texas) to satellite observations in source regions (CONUS, S. America, etc..)

Approach:

•Surface and airborne measurements are used to characterize receptor region and verify model forecasts on local scale

•<u>Nested (global-to-regional) chemical and aerosol forecast models</u> are used to provide estimates of background composition

•Ensemble Lagrangian trajectories are used to identify remote source regions. Trajectories sample forecasted chemical and aerosol fields to understand chemical transformation during transport.

•<u>Satellite measurements</u> are used to quantify source strengths and verify model forecasts on a regional to global scale.

NASA King Air 09/17/06 Objectives:

•CALIPSO validation under-flight•Raster pattern to sample smoke from fires

NASA King Air Flight Plan

NASA LaRC High Spectral Resolution Lidar (HSRL) Backscatter

CALIPSO* validation Leg:

•Both attenuated backscatter measurements show elevated layer of enhanced aerosol on northern portion of CALIPSO leg (dash).

•Aerosol observed by HSRL on southern portion (solid) is obscured by high cirrus along CALIPSO orbit

HSRL Model Verification: aerosol backscatter RAQMS_{regional} (80km)

RAQMS provides a good prediction of the magnitude of BL aerosol backscatter, but:

- misses elevated aerosol suspected of being smoke (B¹, C¹, A², B²,C²) and BL enhancement near Houston (A¹)
- predicts elevated aerosol layer at beginning of CALIPSO underflight that is not observed (dash)

HSRL Model Verification: aerosol extinction STEM (60km)

STEM provides a better prediction of elevated aerosols (C¹,A²,C²) but:

- also misses elevated lower backscatter features (B¹,B²) and aerosol loading near Houston (A¹)
- 2) underestimates aerosol extinction, particularly above 2 km.

Model predictions provide insight into aerosol composition

Altitude Above Ground (meter)

Reverse Domain Filling (RDF) back-trajectories provide insight into time/location of aerosol source region

RAQMS_{global} RDF trajectories allow Lagrangian sampling of airmass chemical history (CO emissions, Biogenic age) prior to HSRL observation

P3 Model Verification: CO & CH2O RAQMS_{global} (2°x2°)

P3 Flight on 9/16

- 1. point sources not explicitly represented in model
- 2. free tropospheric (FT) CO and CH2O predictions are in good agreement with P3
- 3. overestimates (underestimates) CO (CH2O) in boundary layer (BL) => "old" bias in biogenic age (CH2O/CO)

HSRL CALIPSO Leg

Model CO and CH2O/CO provide information on "age" of aerosols

 $\begin{array}{l} RAQMS_{global} \ indicates \ fresh \ (high CH2O/CO) \ emissions \ at \ C^1 \ and \\ background \ CO \ within \ aged \ aerosol \\ (low \ CH2O/CO) \ at \ A^1 \ and \ B^1 \end{array}$

HSRL BIOMASS Leg

Model CO and CH2O/CO provide information on "age" of aerosols

 $\begin{array}{l} \text{RAQMS}_{\text{global}} \text{ indicates fresh (high CH2O/CO) emissions at } A^2 \text{ and } C^2 \\ \text{with background CO within aged } \\ \text{aerosol (low CH2O/CO) at } B^2 \end{array}$

CALIPSO Leg

RAQMS_{global} 10-day RDF Back-trajectory:

RDF analysis shows 10-day old source of fresh emissions (high CO, high CH2O/CO) at points A¹ (1-2km and 0-0.5km) and C¹.

RDF analysis shows 10-day old pollution (elevated CO, moderate CH2O/CO) at point B¹.
HSRL BIOMASS Leg

RAQMS_{global} 10-day RDF Back-trajectory:

RDF analysis shows 10-day old source of fresh emissions (elevated CO, high CH2O/CO) in boundary layer at points A² and C².

RDF analysis shows 10-day old pollution (elevated CO, moderate CH2O/CO) at point B².

AIRS Column CO and MODIS AOD on 09/07/06 (10-days prior to local HSRL observations)

Satellite data provides constraints on aerosol and trace-gas composition in remote source regions.

RAQMS_{retrieved} Column CO and GMAO AOD on 09/07/06 (10-days prior to local HSRL observations)

Verification of global aerosol and trace-gas predictions:

•RAQMS overestimates CO column over S. America and Gulf Coast

•GMAO underestimates AOD over S. America and Pacific NW

•Models utilize NRT biomass burning emissions that are under development and have large uncertainties

RAQMS_{regional} MODIS AOD Assimilation cycle 09/07/06

MODIS AOD assimilation constrains total AOD

RAQMS_{regional} First Guess determines composition

Results in improved estimate of NW biomass and SE sulfate aerosol distributions

CALIPSO Attenuated Backscatter measurements on 09/07/06

(10-days prior to local HSRL observations)

RDF back-trajectories link HSRL CALIPSO Leg to AIRS, MODIS, and CALIPSO measurements

0.8

1.0

Blue = $(750 < z^{\circ} < 2000m)$ S. American source (high CO/? AOD/high backscatter)

RDF back-trajectories link HSRL CALIPSO Leg to AIRS, MODIS, and CALIPSO measurements

<750m (Red)/1500-3000 (Blue) 10-day HSRL B¹ High BS Backtrajectories

Red = $(z^{\circ} < 750m)$ NE US source (moderate CO/high AOD) Blue = $(1500 < z^{\circ} < 3000m)$ Pacific source (high CO/low AOD)

RDF back-trajectories link HSRL CALIPSO Leg to AIRS & MODIS measurements

<750m (Red)/750-3000 (Blue) 10-day HSRL $\rm C^1$ High BS Backtrajectories

0.2

0.4

AOD

0.6

0.8

1.0

RDF back-trajectories link HSRL **BIOMASS Leg to AIRS & MODIS** measurements

<750m (Red)/750-2000 (Blue) 10-day HSRL A² High BS Backtrajectories

0.40.6AOD

RDF back-trajectories link HSRL BIOMASS Leg to AIRS & MODIS measurements

Red = $(z^{\circ} < 750m)$ Canadian source (moderate CO/ ? AOD) Blue = $(1500 < z^{\circ} < 4000m)$ S. American source (high CO/ ? AOD)

RDF back-trajectories link HSRL BIOMASS Leg to AIRS & MODIS measurements

<750m (Red)/750-2000 (Blue) 10-day HSRL C² High BS Backtrajectories

Red = $(z^{\circ} < 750m)$ NE source (moderate CO/High AOD) Blue = $(750 < z^{\circ} < 2000m)$ Midwest source (High CO/AOD)

Conclusions: CALIPSO and HSRL lidar measurements over E. TX/LA/AR show that the regional aerosol distribution on 09/17/06 was strongly influenced by fresh emissions associated with local biomass burning in LA/AR. **Model/Satellite synthesis studies**

Model/Satellite synthesis studies indicate that:

Summary: Ensemble Lagrangian trajectory analysis and Eulerian chemical/aerosol predictions are used to link HSRL aerosol lidar measurements of the Texas regional background to large-scale observations from CALIPSO, MODIS, and AIRS

•long range transport of biomass burning emissions from the Pacific NW and S. America was the most likely source of enhanced lofted aerosol backscatter.

•sulfate production during transport over the SE US contributed to high backscatter observed in the boundary layer throughout the flight