Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS)

A study sponsored by the Clark County Department of Air Quality

Co-PIs: Andrew O. Langford and Christoph J. Senff

NOAA Earth System Research Laboratory Chemical Sciences Division

Cooperative Institute for Environmental Science (CIRES) University of Colorado, Boulder

Updated January 10, 2017

Ozone concentrations in Desert SW approach 2015 NAAQS in late spring

Where does this O₃ come from? Los Angeles? Asia? Wildfires? Stratosphere?

Langford NOAA/ESRL/CSD ENVI-VISION May 10, 2016

Motivation

Mean surface ozone in Clark County approaches the NAAQS in late spring and early summer

Highest ozone in May and June before peak in photochemical production-why?

Where is Clark County?

Clark County encompasses the Las Vegas-Henderson-Paradise, NV Metropolitan Statistical Area (pop. ≈2 million or 70% of Nevada)

Ozone monitors: (pink=state, green=NPS, red=Clark County, blue=NVROI) The Jean monitor (circle) lies between Los Angeles and Las Vegas The Joe Neal monitor (square) typically measures the highest O₃ in Clark County

Mean contribution of STT to surface O_3 during CalNex (May-June 2010)

Stratospheric influx is 4x Asian transport

May 19- June 29, 2013

This question motivated the first LVOS campaign in May-June 2013

LVOS Primary Objectives

- Determine if stratosphere-to-troposphere (STT) and long-range transport from Asia contribute to the springtime O₃ maximum in Clark County.
- Estimate the importance of these processes relative to local O₃ production and regional transport from LA or wildfires.

May 19- June 29, 2013

NOAA TOPAZ Lidar and in situ measurements on Angel Peak

May 19- June 29, 2013

as Vegas Ozone Study

High ozone days in the Las Vegas Valley coincided with STT events and high ozone at and above Angel Peak

2008 ozone NAAQS (75 ppbv) exceeded on May 21 and 25

2013: black = CC mean MDA8, red=CC highest MDA8

and coincided with STT/transport events

Clark County was also affected by fires in Arizona, California, and Nevada

with wildland fires in CA or NV

May 19- June 29, 2013

An overview of the 2013 Las Vegas Ozone Study (LVOS): Impact of stratospheric intrusions and long-range transport on surface air quality

CrossMark

A.O. Langford ^{a, *}, C.J. Senff ^{a, b}, R.J. Alvarez II ^a, J. Brioude ^{a, b, c}, O.R. Cooper ^{a, b}, J.S. Holloway ^{a, b}, M.Y. Lin ^{d, e}, R.D. Marchbanks ^{a, b}, R.B. Pierce ^f, S.P. Sandberg ^a, A.M. Weickmann ^{a, b}, E.J. Williams ^a

^a NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO 80305, USA

^b Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, CO 80309, USA

^c Laboratoire de l'Atmosphere et des Cyclones (LACy), UMR 8105, Saint-Denis, La Reunion, France

^d Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA

e NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

^f NOAA/NESDIS Center for Satellite Applications and Research, Cooperative Institute for Meteorological Satellite Studies, Madison, WI 53706, USA

$H \ I \ G \ H \ L \ I \ G \ H \ T \ S$

• Stratosphere-to-troposphere transport (STT) significantly impacts surface O₃ in the intermountain west.

- STT can directly lead to exceedances of the 2008 ozone NAAQS during springtime.
- \bullet STT influences background surface O_3 more than long-range transport from Asia.

• With a 65 ppbv standard, exceedances may be too frequent to treat as "exceptional events" in the intermountain west during springtime.

May 19- June 29, 2013

Explore this journal >

Research Article

Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the Southwestern U.S.

A. O. Langford M, R. J. Alvarez II, J. Brioude, R. Fine, M. Gustin, M. Y. Lin,

R. D. Marchbanks, R. B. Pierce, S. P. Sandberg, C. J. Senff, A. M. Weickmann,

E. J. Williams

Accepted manuscript online: 30 December 2016 Full publication history

DOI: 10.1002/2016JD025987 View/save citation

Cited by: 0 articles 🌼 🙀 Citation tools

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2016JD025987

Accepted Articles

Browse Accepted Articles Accepted, unedited articles published online and citable. The final edited and typeset version of record will appear in future. Outstanding questions to be addressed in *FAST*-LVOS

- How much of the transported ozone aloft reaches the LVV and how does it get there? (ML entrainment vs orographic flows)
- How much ozone is transported into the LVV from Southern California? (boundary layer vs free trop. transport)
- How much do wildland fires contribute to late spring ozone in the LVV???

Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS)

(May 20-June 30, 2017)						
• TOPAZ lidar	(NLVA)	(NOAA/CSD)				
• micro-Doppler lidar	(NLVA)	(NOAA/CSD)				
Mobile sampling lab	(Angel Peak)	(NOAA/CSD)				
Ozonesondes*	(Joe Neal?)	(NOAA/GMD)				
Mooney aircraft*	(NLVA)	(Scientific Aviation)				
 NASA Alpha Jet (AJAX)** 		(NASA)				
• AM4 modeling		(NOAA/GFDL)				
*Intensives only **TBD						

Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS)

(May 20-June 30, 2017)

Intensive Operating Periods (IOPS) to capture transport events

- Reinforce TOPAZ crews for 24 h runs (2 additional people)
- Ozonesonde crew arrives (2 launches/day, 30 total)
- SA Mooney transits to NLVA for daily flights (6h/day, 90 h total)
- CSD mobile lab on standby for mobile operations

(≈15 out of 42 days)

Las Vegas Ozone Study

May 19-26, 2013

STT events most likely near the beginning of the campaign

Las Vegas Ozone Study

May 19-26, 2013

STT events most likely near the beginning of the campaign

Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS)

(May 20-June 30, 2017)

- Deploy improved TOPAZ lidar to NLVA ✓ Co-locate with radar wind profiler
- Deploy micro-Doppler lidar to NLVA
 ✓ Mixed layer depth and entrainment
- Base mobile sampling lab at Angel Peak
 ✓ CO, N₂O, H₂O, NO, NO₂, NOy, O₃
- Base Scientific Aviation aircraft at NLVA
 ✓ Horizontal and vertical variability of O₃
- Launch GMD ozonesondes from Joe Neal ✓ Vertical profiles into the stratosphere

1. TOPAZ lidar with extended vertical range at NLVA

TOPAZ can now track high ozone layers from the free troposphere into the LVV

Stratospheric intrusion during CABOTS (California Baseline Ozone Transport Study)

Typical TOPAZ performance during LVOS

1. TOPAZ lidar with extended vertical range at NLVA

TOPAZ can now track high ozone layers from the free troposphere into the LVV

Stratospheric intrusion during CABOTS (California Baseline Ozone Transport Study)

North Las Vegas Airport (NLVA)

Vaisala radar wind profiler, ASC sodar, and Radiometrics profiling radiometer provide effective rawinsonde soundings every hour with wind profiles from the surface to 3 kilometers AGL and temperature and humidity profiles to 10 kilometers AGL.

1. TOPAZ lidar with extended vertical range at NLVA

Better understanding of transport through collocation with radar wind profiler

Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS)

(May 20-June 30, 2017)

- Deploy improved TOPAZ lidar to NLVA
 ✓ Co-locate with radar wind profiler
- Deploy micro-Doppler lidar to NLVA
 ✓ Mixed layer depth and entrainment
- Base mobile sampling lab at Angel Peak
 ✓ CO, N₂O, H₂O, NO, NO₂, NOy, O₃
- Base Scientific Aviation aircraft at NLVA
 ✓ Horizontal and vertical variability of O₃
- Launch GMD ozonesondes from Joe Neal ✓ Vertical profiles into the stratosphere

NOAA micro-pulse Doppler Lidar : microDop

Pulse Length	30,60,90 m	
Pulse Rep Freq	20,000 Hz	
Beam Rate	2 Hz	
Pulse Energy	50 µJ	
Wavelength	1.553 μm	
Beam Diameter	7.62cm	
Orientation	Vertical	
Max Range	7km	
Electrical Power	120V 30A	

2. Vertically-staring Micro Doppler lidar at NLVA to characterize mixed layer

Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS)

(May 20-June 30, 2017)

- Deploy improved TOPAZ lidar to NLVA
 ✓ Co-locate with radar wind profiler
- Deploy micro-Doppler lidar to NLVA
 ✓ Mixed layer depth and entrainment
- Base mobile sampling lab at Angel Peak
 ✓ CO, N₂O, H₂O, NO, NO₂, NOy, O₃
- Base Scientific Aviation aircraft at NLVA
 ✓ Horizontal and vertical variability of O₃
- Launch GMD ozonesondes from Joe Neal ✓ Vertical profiles into the stratosphere

LVOS in situ measurements at Angel Peak

3. Mobile lab for rapid *in situ* measurements

NOAA CSD mobile lab Instrumentation

Gas	Primary Sources		
O ₃	Photochemistry, stratosphere		
N ₂ O	Soils		
NO, NO ₂ , NOy	Combustion, lightning, soils		
CO, CO ₂	Combustion, vegetation		
CH ₄	Agriculture, oil and gas, landfills		

Mobile lab to be based at Angel Peak

3. Mobile lab for rapid *in situ* measurements

Can measure while in motion at 1 s resolution

Permanent infrastructure:

- up to 5 shock-mounted electronics racks
- configurable roof-top inlet plates
- dedicated data system and real-time display
- 2 kW AC or 12 V power from dedicated alternator
- 2 hr battery backup, and plug-in capability
- meteorology sensors

Mobile lab will be based at Angel Peak. Requires two 20 A circuits and internet while parked.

3. Mobile lab for rapid *in situ* measurements

NOAA CSD mobile lab Instrumentation

Instrume	nt Gases	Time	Detection Limit	PI
CRDS	NO, NO ₂ , NOy, O ₃	1 s	0.1 - 0.001 ppbv	Dubé/Brown
WS-CRDS	CO ₂ and CH ₄	1 s	0.2 ppmv for CO ₂ 0.2 ppmv for CH ₄	Peischl/Ryerson
ICOS	CO, N ₂ O, and H ₂ O	1 s	0.2 ppbv for N ₂ O 0.2 ppbv for CO 100 ppmv for H ₂ O	Peischl/Ryerson

Station CSD Mobile Lab on Angel Peak

Drive from AP to LVV profile trace gas distribution during intensives

Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS)

(May 20-June 30, 2017)

- Deploy improved TOPAZ lidar to NLVA ✓ Co-locate with radar wind profiler
- Deploy micro-Doppler lidar to NLVA
 ✓ Mixed layer depth and entrainment
- Base mobile sampling lab at Angel Peak
 ✓ CO, N₂O, H₂O, NO, NO₂, NOy, O₃
- Base Scientific Aviation aircraft at NLVA
 ✓ Horizontal and vertical variability of O₃
- Launch GMD ozonesondes from Joe Neal
 ✓ Vertical profiles into the stratosphere

4. Scientific Aviation research aircraft

Single-engine fixed-wing Mooney

Measurements of CO_2 , CH_4 , O_3 , and NOx, in addition to horizontal wind, temperature and humidity.

4. Scientific Aviation research aircraft

3 intensives of 4 days each with 6 hours flight time per day

Potential Flight Plan (6 h flight)

- 1. Spiral to 6 km over NLVA
- 2. Fly to AP at 6km
- 3. Spiral to 3 km over AP
- 4. Fly to Jean at 3 km
- 5. Fly to Barstow at 3 km
- 6. Descend to 1 km
- 7. Fly to Jean at 1 km
- 8. Spiral to 6 km at Jean
- 9. Fly to NLVA at 6 km
- 10. Repeat Jean-NLVA legs at 1 km intervals to end

Aircraft will transit from Boulder or Davis for intensives

Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS)

(May 20-June 30, 2017)

- Deploy improved TOPAZ lidar to NLVA
 ✓ Co-locate with radar wind profiler
- Deploy micro-Doppler lidar to NLVA
 ✓ Mixed layer depth and entrainment
- Base mobile sampling lab at Angel Peak
 ✓ CO, N₂O, H₂O, NO, NO₂, NOy, O₃
- Base Scientific Aviation aircraft at NLVA
 ✓ Horizontal and vertical variability of O₃
- Launch GMD ozonesondes from Joe Neal ✓ Vertical profiles into the stratosphere

5. GMD ozonesondes at Joe Neal*

Launch ozonesondes at 0900 and 1300 MST during IOPS

Boulder, Colorado

GMD ozonesonde crew will transit from Boulder for intensives

*launches are tentatively planned for the Joe Neal monitoring site

FAST-LVOS Work Plan (routine)

Component

- ✓ TOPAZ (>8 h of daily operation)
- ✓ micro-Doppler lidar (continuous)

Mobile van

NLVA lidars

✓ Continuous sampling at AP

Mooney Aircraft

✓ Standby mode in Boulder or Davis

Ozonesondes

✓ Standby mode in Boulder

Event forecasting

- ✓ NASA AIRS
- ✓ NOAA/NESDIS/NASA RAQMS model
- ✓ NOAA Rapid-Refresh model

(Brown/Peischl)

(Conley/Pifer)

(Johnson/Cullis)

(Langford/Lin)

FAST-LVOS Work Plan (event)

Forecasted STT, Fire, or Transport Event

- Activate 2nd TOPAZ team for continuous measurements
- Activate GMD ozonesonde team for intensives
- Transit Scientific Aviation aircraft to NLVA for intensives
- Begin mobile van profiling if ozone reaches Angel Peak

