Quantification of Secondary Pollutant Formation Metrics in Southeastern New Hampshire (A51E-0730)

Robert J. Griffin and Christina A. Johnson

Institute for the Study of Earth, Oceans, and Space and Department of Earth Sciences, University of New Hampshire (rob.griffin@unh.edu)

Why Do We Care About Ozone?

Effects of Tropospheric Aerosols

The Tailpipe of the United States

AIRMAP Thompson Farm Sampling Site

Relevant Data Collected

Particle data (24-hour resolution): Particle composition (Filters)

Gas-phase data (all 1-minute resolution except *): CO (IR Spectroscopy), NO and NO_y (Chemiluminescence), O₃ (UV Spectroscopy), SO₂ (Pulsed Fluorescence); C₂-C₁₀ Organics (*Hourly 10-minute averages, Gas Chromatography)

Other data (1-minute resolution): j_{NO2} (Filter Radiometry) Meteorological parameters

Example Data: Ozone

Data Reduction

- Data are considered only for August 2002 during the New England Air Quality Study
- Data are not considered from 6PM through 8AM due to lack of strong solar radiation
- Data are ignored if any of the monitors were zeroing, calibrating, or reading values below the detection limit
- Data are removed when the photostationary state was not expected to/did not hold
- Data are averaged to time-scale of VOC measurements (except for regressions)

Ozone Production Rate

- OPR1 = $k_{\text{OH-CO}}$ [OH][CO] + $_i k_{i,\text{OH}} Y_i$ [OH][VOC] $_i$
 - Rate constants from literature as f(T)
 - *Y* estimated from expected VOC degradation pathways
 - Background levels were assumed for higher carbon number VOCs
 - [OH] estimated by a box-version of a gas-phase mechanism for atmospheric chemistry (CACM)
 - ppb hr⁻¹
- $OPR2 = 2.0k_{NO-HO2}[NO][HO_2]$
 - [HO₂] estimated by CACM

Ozone Production Efficiency

- Regression techniques (give average OPE)
 - O_3 versus NO_y - NO_x (slope = OPE, intercept = background O_3)
 - [NO₂] from photostationary state
 - O_3 versus CO (corrected slope = OPE), gives poor correlation and unrealistic value
 - O_3 versus acetylene (corrected slope = OPE), gives poor correlation and unrealistic value
 - Dimensionless
- $OPE = OPR/L(NO_x)$ (gives temporal resolution)

• $L(NO_x)$ (rate of loss of NO_x) assumed to be equivalent to the rate of nitric acid formation: $k_{OH-NO2}[OH][NO_2]$

Reactivity

• $R_i = k_{i,OH}[VOC]_i$ (also applicable to CO)

•
$$R1 = _i R_i$$

•Equivalent to OPR1/[OH] if *Y* ~ 1 for all VOCs (very close)

• S⁻¹

• R2 = OPR2/[OH]

•Assumes that $Y \sim 1$ for all VOCs

CACM Overview

- Total of 361 reactions considered
- Total number of species for which kinetic expressions are solved: 123
- Total number of species for which the pseudosteady state approximation is made: 68
- Parent VOCs lumped according to structure, functionality, reactivity, and experimental SOAforming potential

OPR Comparisons

Caveat: Many of the other studies give elevated or vertically averaged values that tend to be lower than surface values

Reactivity Results

Reactivity Comparisons

- Overall reactivities in New Hampshire are very low compared to those in these other locations
- In Nashville and NYC, biogenic > anthropogenic (as in New Hampshire)
- In Philadelphia, biogenic ~ anthropogenic
- In Phoenix, anthropogenic > biogenic
- In the SoCAB and Houston, anthropogenic >> biogenic

Average OPE

Temporal OPE

Fix: $L(NO_x)$ increased (~x2) so that average OPE was < 9.5

OPE Comparisons

Highest OPEs in less polluted environments

Formation of SOA

 $VOC + ox \rightarrow$ $P_1, P_2, ..., P_n$

Here, we apply the equivalent of the principle of OPR to estimate SOA production rate

Implications: Visibility reduction, health effects, climate change (direct and indirect effects), etc.

Calculation Methods

$$SOA_{T} = SOA_{i} = Y_{i} ROG_{i}$$

SOA rate = $SOA_{T}/(t_{2} t_{1})$

SOA Formation Rates

g m⁻³ hr⁻¹

Ozone Conclusions/SOA Conclusions/Acknowledgments

- Low OPR
- High OPE (NO_x poor); significant contribution to NO_x loss from route other than nitric acid formation
- Low reactivity dominated by alkenes (biogenic)
- Mixing of aged or O_3 -rich air masses probably leads to larger peaks in O_3
- Range of 0.1 to 2.9 g m⁻³ day⁻¹ for SOA production rate if OM from filter measurements is varied by a factor of 2 and yield is increased by a factor of 2 (highest rates for monoterpenes)
- If lifetime is ~ 1 day, SOA formed on-site represents 2-59% of total OA and up to 24% of fine PM observed on these dates (remainder: POA or transport)
- NOAA-AIRMAP Cooperative Institute
- UNH Colleagues: Rachel Russo, Barkley Sive, Bob Talbot, and Yong Zhou

Presented at the Winter Meeting of the American Geophysical Union

San Francisco, California, December 8-12, 2003