Regional Air Quality Forecasts during NEAQS-2K2: Comparisons with Observations

S. McKeen, E. Williams, B. Lerner, W.M. Angevine, CIRES/NOAA Aeronomy Lab G. Grell, S. Peckham, NOAA Forecast Systems Lab J. McHenry, Baron Meteorological Services J.W. Munger, Harvard University

Acknowledgments: AIRMAP data

(R. Talbot, U. of New Hampshire)

Comparisons of Two Real-time Air Quality Models, MMM5-CHEM and MAQSIP-RT

Focus on O₃ photochemistry within the Northeast U.S.

- Characterize O₃ predictions two statistical measures
- Emissions from observations and model results
- Photochemical mechanisms O₃ formation

Air Quality Forecast Web Sites

NOAA/FSL:http://www-frd.fsl.noaa.gov/aq/wrfBARON AMS:http://www.baronams.com/products/maqsip

Summary of MAQSIP-RTand MM5-CHEMEulerianForecast Models for the NEAQS-2002 study

	MCNCMAQSIP-RT	FSL MM5-CHEM
Model Resolution	45, 15, 5 km	27, 9, 3 km
Formulation	Offline (1/2 hr)	Online
Emissions	SMOKE	EPA-NET96 (county level)
Chemistry	CB-IV	RADM-2
BL physics	MRF physics	Mellor-Yamada2.5
Met. Initialization	ETA 22-km	RUC 20-km (12 hr spin-up)
Structure	30m lowest level	15m lowest level
Convection	All 3 resolutions Kain-Frisch	Only 27 km resolution Grellet al., 2001

• Although both models are based on MM5, there is no similarity

Harvard Forest - O₃, NOy, CO, PAN, NOx

- Pearsonr² value used as a measure of forecast skill
- No difference in r² for different forecast start times

- Analysis restricted to first 23 hours of 00Z forecasts
- r² of 8 hour averages used as a measure of day-day, large-scale forecast ability
- r^2 of 8 hour averages always > r^2 of 8 hour averages

- Median model bias used as the second statistical measure
- Median model biases the same for 8 hr averages and 1 hour averages

•No apparent improvement of forecast skill as model resolution increases
•Except at Isle of Shoals, one model not any better than the other

Correlations of hourly averages driven by day-to-day, larger scale corrections
MM5-CHEM does relatively worse at handling diurnal variability at TF and CS
No significant trends in O₃ bias with model resolution, MM5-CHEM higher

- MAQSIP-RT, hourly avgs.
- MM5-CHEM, hourly avgs.
- Eight hour averages

Both models do diurnal variability worse for coastal sites, for both NOy and CO
No improvement in forecast skill with increasing model resolution
For 8 hr averages, improvement of skill with higher resolution

Some improvements in model biases as resolution increases
MM5-CHEM biased high by a factor of 2
MM5_CHEM biased high relative to MAQSIP for all cases of NOy and CO

• MAQSIP has much deeper and faster mixing of O_3 , NOy,CO and H_2O

• Bottom 200 meters suggest slower MM5-CHEM transport from surface

Emissions Ratios from Species-Species Correlations

Observed Slope = .051 +/- .002 Model Slope = .074 +/- .001

•High Correlations between NOy and CO for specific episodes

•NOy to CO ratios predicted extremely well (for this case)
•Model ratios a factor of 2 below emission ratios
•Deposition of NOy a controlling factor in ratio determination

Ozone Production Efficiency From observations and model results

•Ozone versus NOy-NOx as a measure of ozone production efficiency •Good correlations for the Harvard Forest site, 14 days in August

Conclusions

MM5-CHEM versus MAQSIP-RT comparisons

 No big advantage to finer horizontal resolution
 Emission ratios (CO/NOy) reproduced well
 O₃ production efficiency reproduced well
 Large influence of NOy deposition in model correlations
 Biases can be attributed to PBL transport differences

Comparisons of models that will be operational in 2004

- WRF-CHEM-Aerosol (FSL/NOAA) Steve Peckham et al. Lisa Darby et al.
 NEAQS 2K2 poster session
- ETA-CMAQ (NWS/NCEP/ARL) See Stu McKeen