

Airborne and Emissions Studies of Non-CO2 Climate Gases

Dale Hurst

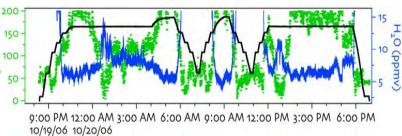
January 29-31, 2008 ~ Boulder, Colorado

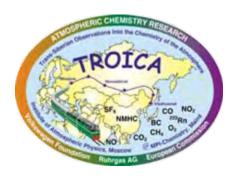
ESRL Atmospheric Chemistry Review

1. How large are the emissions of non-CO2 climate gases in different regions?

- Audits of larger-scale emission estimates (and banks)
- Identify sources and co-emissions
- Reveal seasonal and inter-annual differences in emissions

Emissions studies using aircraft and trains as measurement platforms


2. How are the distributions of non-CO2 climate gases influenced by dynamical processes in the upper atmosphere?

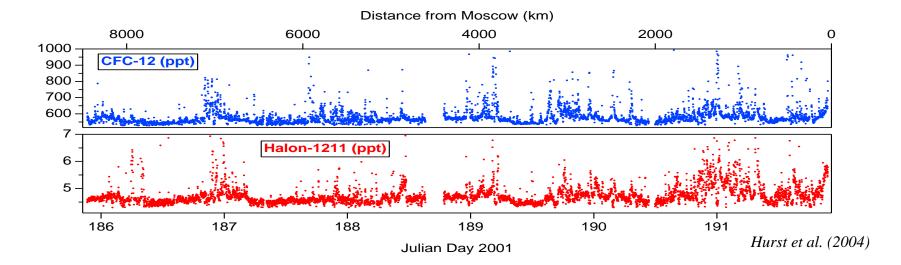

- Convective systems impact the tropical tropopause layer
- Stratosphere to troposphere exchange

High-altitude aircraft for in situ tracer measurements that identify and quantify dynamical processes (Ex-UTLS, TTL)

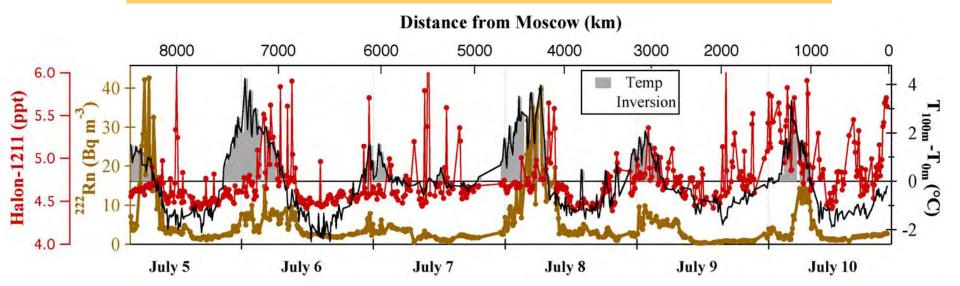
Trans-Siberian Observations Into the Chemistry of the Atmosphere (TROICA)

NOAA ESRL and CU CIRES
Institute of Atm. Physics, Russia
Max Planck Institute, Germany

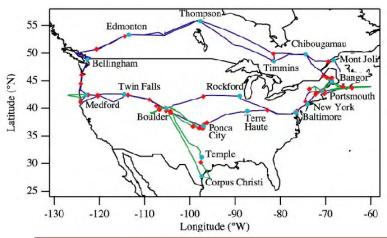
Hurst et al. (2004)


Motivations:

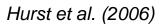
- In situ measurements of non-CO2 climate gases in a very under-sampled region of the world
- Inaugural large-scale study of the distributions of climate gases in Russia
- Develop collaboration between ESRL and Russian scientists


Post-Expedition Question (based on WMO [2003])

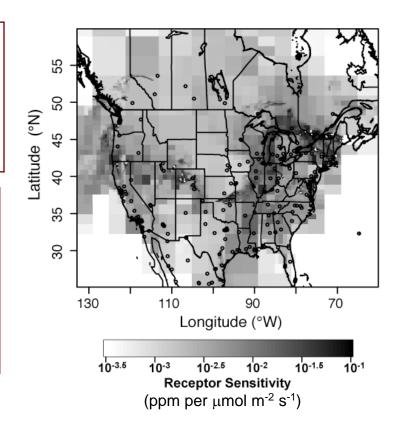
Are disproportionately large Russian emissions of CFC-11, CFC-113, CBrCIF2 and CCl4 the reason their inventory-based global emission estimates are 30-60% less than their burden-based global emission estimates?


Trans-Siberian Observations Into the Chemistry of the Atmosphere (TROICA)

Trans-Siberian Observations Into the Chemistry of the Atmosphere (TROICA)


2001 Emissions (Gg)			
	Russia Hurst et al. (2004)	Global WMO (2007)	
CFC-11	1.2	82	Conclusion
CFC-113	0.8	12	Russian emissions of these halocarbons could not account for the 30-60% shortfalls in their inventory-based global
CBrClF ₂	1.1	8.7	
CCl ₄	0.6	65	emission estimates

2003 COBRA-North America

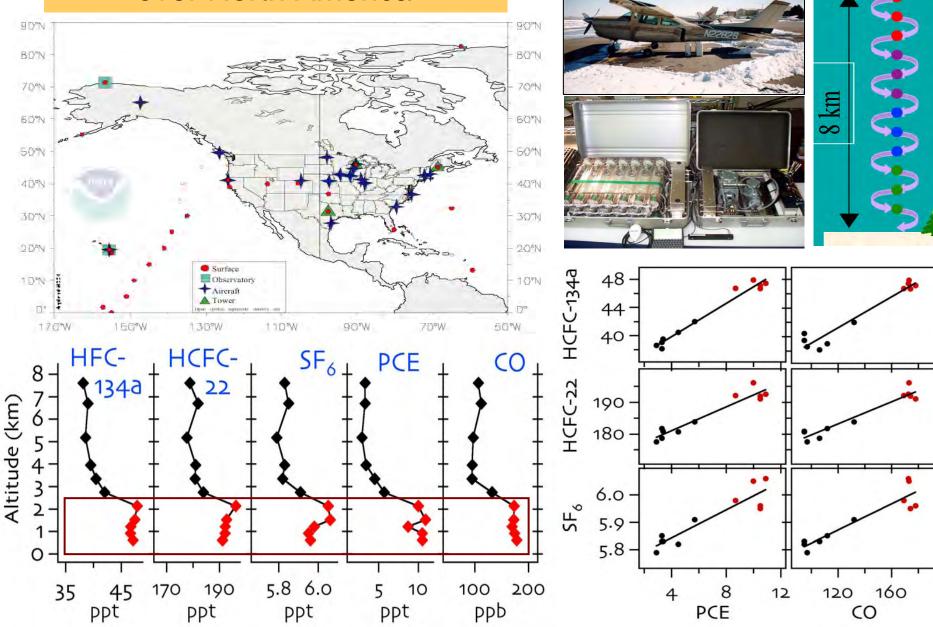


- NOAA ESRL and CU CIRES
- Harvard University
- University of North Dakota
- NCAR

Motivation:

- In situ measurements of non-CO2 climate gases over a large extent of the USA & Canada
- Quality of emission estimates increased by high-quality USA emission inventories for CO <u>Questions:</u>
- Are there regional differences in the emissions of climate gases?
- Are N. American emissions of halocarbons still significant on the global scale?
- Is the global CFC-12 bank truly exhausted?

2003 COBRA-North America


	2003	Emissi	ons
	USA+CAN Hurst et al. (2006)	Global <i>WMO</i> (2003)	
CFC-11	8 ± 3	71	
CFC-12	16 ± 4	92	
CFC-113	2 ± 1	4	
CH ₃ CCl ₃	4 ± 1	39	
CBrClF ₂	0.5 ± 0.2	7	
CCl ₄	-0.1 ± 0.7	64	

 $\Delta Bank (2015) + \Delta Emissions (2002-2015)$ CFC-11 1026 Gg + 109 Gg = **1135 Gg** CFC-12 280 Gg + 275 Gg = **555 Gg**

Impacts of Increased Emissions Projections Δ EESC: +165 ppt (6-7 yr delay in O₃ recovery) Δ Radiative Forcing: +0.02 W m⁻² (eq CO₂ +1.3 ppm) Regional-scale emissions studies like COBRA-NA and TROICA provide critical "spot" checks of global estimates of emissions and banks.

Aircraft-Based Flask Sampling over North America

NASA - NOAA ESRL Collaborative Airborne Projects

ER-2 (ACATS) 1989-2000

Balloon (LACE) (LA 1996-2004

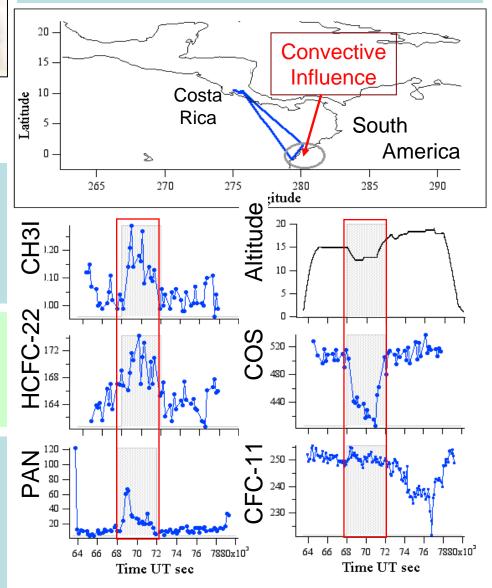
(LACE, PANTHER) 1999 -

WB-57

Motivation

Accurate model representations of transport and chemistry are prerequisite to meaningful projections of climate change and stratospheric ozone depletion

Our Objective


Make high-quality tracer measurements to identify and quantify important chemical and dynamical processes in the upper atmosphere

Accomplishments

- Stratospheric lifetimes of climate gases
- •Stratospheric mean ages (SF6)
- •Entrainment/detrainment rates (tropical pipe)
- Transport into the lowermost stratosphere
- Descent and mixing in N. polar vortex

Recent Work January 2006 CR-AVE: Investigation of the TTL

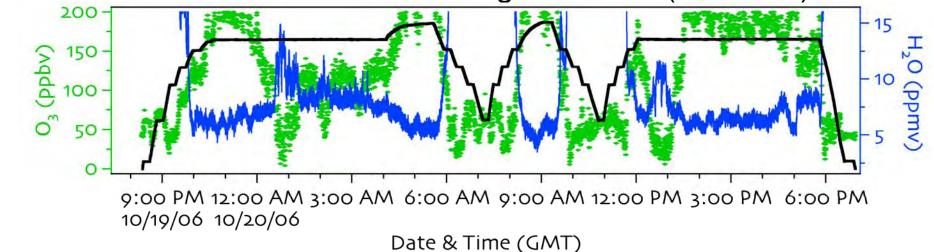
PANTHER measurements

Unmanned Aircraft Systems (UAS)

2005 UAS Flight Demonstration Project 2006 NASA/USDA-Forest Service Fire Mission

Motivation and Question:

- Determine UAS suitability for NOAA's needs
- Demonstrate reliability and safety
- What advantages are gained using UAS ?


- Tropopause anomalies can bring O3-rich stratospheric air into the troposphere
- Important source of tropospheric O3
- How will this source be altered by a changing climate?

UAS advantage

Endurance (>24 hours)

• Can target, re-target flight objectives w/ feedback from earlier measurements!

UCATS Data: Altair Flight 061019 (23 hours)

Summary

Mobile-platform emission studies of non-CO2 climate gases

- Emissions "missing" from inventory-based global estimates (select halocarbons): not in Russia
- North American CFC-12 emissions in 2003 dismiss the reported exhaustion of global CFC-12 bank
- Ongoing monitoring of North American emissions of climate gases with routine vertical profiles

High altitude airborne measurements of non-CO2 climate gases

- Have advanced our knowledge of many chemical and dynamical processes
- Most recent investigations:
 - Influence of convective activity on TTL composition
 - Stratosphere-troposphere exchanges (tropospheric ozone)
- Demonstrated the utility of UAS in studies of the mid-latitude UTLS
 - Shows promise for monitoring of changes in UTLS processes like STE