Aerosol-Cloud Interactions

- Small-scale modeling
- In-situ measurements
- Surface-based remote sensing

Graham Feingold

A Complex System with Myriad Feedbacks

Cloud ←→ Aerosol

- ← Aerosol affects cloud radiative properties, precipitation
- ← Absorbing aerosol causes "cloud burning" (semi-direct)
- \rightarrow Scavenging and wet deposition
- \rightarrow Aqueous chemistry (inorganic + organic)

$Cloud \leftarrow \rightarrow Dynamics$

- \leftarrow Convection
- \rightarrow Evaporation, precipitation

Cloud $\leftarrow \rightarrow$ Radiation

- ← Longwave cooling, absorption
- → Scattering, absorbing

Aerosol-Cloud-Dynamics-Radiation-Chemistry-Land-use

What is NOAA ESRL's Role?

To understand the <u>fundamental processes</u> at the micro-to-cloud scale $(\mu m - 10 \text{ s km})$ and to improve representation of aerosol-cloud interactions in regional scale \rightarrow GCM models

Forcing on regional and global scale

Effect of aerosol transport on clouds

Large Eddy Simulations of aerosol $\leftarrow \rightarrow$ cloud interactions; **Observations** (in-situ and remote)

Surface remote sensing avoids ambiguity of aerosol/cloud interface

Measurements of Aerosol-Cloud Interactions

Modeling: Sensitivity of drop size r_e to various parameters

$S_i =$	d	In	r _e /	d	In	X_i
---------	---	----	------------------	---	----	-------

S	X _i	All	Clean	Polluted		
∫amic	LWC	0.33	0.33	0.33		
dyn	updraft	-0.10	-0.06	-0.17		ACI
aerosol	number	-0.28	-0.30	-0.12	Modeling	0.12 – 0.30
	size	-0.09	-0.11	-0.11	In-situ	0.15 – 0.30
	dispersion	0.16	0.11	0.26	Surface	0.10 - 0.15
	Soluble	-0.03	-0.03	-0.03		0.05 0.10
	fraction				remote	0.05 – 0.10

$$r_e \propto \left(\frac{LWC}{N_d}\right)^{1/3}$$

 $\Rightarrow S_{LWC} = 0.33$

- Number and size matter most
- Updraft more important when polluted
- Composition relatively unimportant

Feingold, GRL 2003

Relating Aerosol-Cloud Interactions to TOA Radiative Forcing: Modeling

 $3 d \ln \alpha$

McComiskey and Feingold, GRL, 2008

Higher-order Indirect Effects

More aerosol \rightarrow more drops \rightarrow less coalescence \rightarrow <u>less rain</u> \rightarrow higher LWP \rightarrow higher cloud fraction \rightarrow longer lifetime

A monotonic response...

Aerosol concentration, cm⁻³

Higher-order Indirect Effects contd..

More aerosol \rightarrow more drops \rightarrow less coalescence \rightarrow <u>less rain</u> \rightarrow higher LWP \rightarrow higher cloud fraction \rightarrow longer lifetime ? ?

A non monotonic response...

Aerosol Effects on Cloud Lifetime: modeling

Jiang, Xue, Teller, Feingold, Levin: GRL 2006

Aerosol Effects on Cloud Morphology via Drizzle

Comparison between Model and In-situ Observations

5000

4000

Clouds in Houston sampled by aircraft; CIRPAS/CalTech/NOAA

Clouds modeled by large eddy simulation

Jiang, Feingold, et al. 2008

Statistical Comparisons

Absorbing aerosol: modeling of the semi-direct effect

Summary

Albedo Effect

- Significant improvement in understanding of processes through observations and modeling;
- GCMs that use satellite remote-sensing estimates of aerosol-cloud interactions likely underestimate the albedo effect.

Higher-Order Indirect Effects

- Improved understanding of complexity of feedbacks in the coupled aerosol-cloud system;
- GCM representation of the higher order indirect effects is inadequate since it <u>prescribes</u> an increase in cloud lifetime and cloud fraction responses.

The Future

More aerosol-cloud-climate work

- Modeling, observations, bridging the scale gap

Ice Modeling

- Aerosol-cloud interactions in Arctic Stratus

Aerosol Effects on Precipitation in Deep Convective Clouds

- Water resources are in increasingly short supply

(population pressures and climate change)

A bright future for cloud studies!

