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Outline

• Observations from long term measurements
• Hypotheses
• Results from process studies
• Conclusions
• Future work
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Systematic Variability
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From Delene and Ogren, 2002
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back scattering
total scattering

extinction = scattering + absorption

Lower amounts of aerosol (less scattering) correspond to smaller, darker particles.
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Systematic variability and aerosol ‘type’

Bob’s plot of angst vs AOD??
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•Data acquired during cloud-free, sun-lit periods in Arctic and Antarctic
•Plot shows column aerosol properties at ambient conditions
•Dust and smoke data for specific events identified by satellite and other data

A version of this plot appeared in Tomasi et al., 2007

Aerosol Optical Depth

Ny-Alesund, 
haze
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Effect of cloud on aerosol optical properties
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Cloud event

Onset of cloud causes:
•Decrease in light scattering (less aerosol)
•Decrease in single scattering albedo (darker aerosol)
•Increase in backscatter fraction (smaller aerosol)
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Data from Chebogue Point, during ICARTT
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no precipitation

precipitation

Hypotheses

Absorbing aerosol (     )
Scattering aerosol (     )

Large, scattering aerosol 
particles are scavenged.

• Aerosol light scattering is dominated by particles that are 
readily-scavenged by clouds, (e.g., sulfates)

• Aerosol light absorption is dominated by less readily- 
scavenged particles, (e.g., soot)

• Larger particles are more readily scavenged by clouds

In a cloud, the unscavenged particles – interstitial aerosol -
will be enriched in darker, smaller particles
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Sampling Sites

Site Campaign When Aerosol type
ARE SOACED Summer, 2004 Arctic air, remote continental
CBG ICARTT Summer, 2004 Aged urban
HLM n/a Winter, 2006 Aged urban, biomass burning
PYE MASRAD Summer, 2005 Clean marine

Mt. Åreskutan, 
Sweden (ARE)

Chebogue Point,
Nova Scotia (CBG)

Holme Moss,
United Kingdom (HLM)

Point Reyes,
California (PYE)

•Sites had approximately same amount of aerosol - relatively clean 
•Aerosol spanned range of size and darkness observed at other sites
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Assume cloud drops (     ) are larger than 5 μm in diameter.
Assume particles (         ) are smaller than 5 μm in diameter.

5μm 
impactor

Clear conditions

INSTRUMENTS

5μm 
impactor

Testing the Hypothesis

INSTRUMENTS

Cloudy conditions

Sampling inlet excludes cloud 
droplets

in-cloud measurements 
represent the particles that 
were not scavenged by the 
clouds - interstitial aerosol

Note: air is at low RH (dry) when sampled by instruments 
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Identifying cloudy periods

• Clouds decrease the contrast 
between black and white target 
areas

• Contrast reduction is a function of 
cloud extinction coefficient and 
distance from camera

• Works in places with LONG hours 
of daylight (Sweden in summer)

Using a webcam

•IR flux ratios – Ratio of downwelling to upwelling IR flux > 0.99   cloud

•Off the shelf instruments (e.g., Present Weather Sensor)

Other methods
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Effect of cloud on aerosol properties
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Effect of cloud on aerosol properties
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Cloud processing tends to reduce cooling nature of aerosol
Changes in aerosol properties have opposite effects on RFE 

Chebogue Areskutan Point Reyes

Cloud processing and aerosol radiative forcing efficiency

Clear   Inter              Clear    Inter              Clear    Inter              Clear   Inter

Holme Moss

•Darker aerosol less cooling
•Smaller aerosol more cooling

PYE: dominant aerosol change increase in backscatter fraction decrease RFE
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The preferential scavenging of scattering aerosol by clouds may 
explain the relatively long lifetime and ubiquity of absorbing aerosol in 
the atmosphere.

Implications for aerosol lifetimes 

Smoke from the 2004 Alaskan forest fires 
was detected in Norway and Greenland a 
month after emission.

Relatively dark aerosol (i.e., low single 
scattering albedo) is observed in some 
remote locations (e.g., aerosol aloft, Arctic 
haze).

Single scattering albedo

A
lti

tu
de

 (m
)

~600 flights, dp<1um
Surface, dp<1um

Darker aerosol

Measurements made over DOE-ARM site in 
Oklahoma, March 2000-September 2005.
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Conclusions
•Interaction with clouds changes the optical properties of aerosol. 

Less aerosol, darker aerosol, smaller aerosol

•Cloud-processed aerosol (as represented by interstitial aerosol) 
tends to be less cooling than aerosol measured in clear conditions.

Cloud processing increases warming potential of aerosol

•Future work
Investigate how differences in cloud processing are driven by other 

aerosol properties, e.g., hygroscopicity/composition, size, etc.
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CHAPS flights, June 2007

• Flew within and outside clouds
• Measured chemical composition 

of cloud drop residuals, ambient, 
and interstitial aerosol

Organic dominates interstitial and 
ambient aerosol.
Sulfate concentration increases relative 
to organic in cloud drop residuals

interstitial/amb

cloud

interstitial/amb

cloud

Oklahoma City

Preliminary AMS data, courtesy BNL
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Water uptake by particles can have significant effect on forcing efficiency.
Interstitial aerosol still tends to be more warming than ambient aerosol when 
RH considered.
Difference is likely due to composition, microphysics or some combination. 

Forcing efficiency at ambient relative humidity

HLM-interstitial

HLM-clear
PYE-clear

CBG-clear

PYE-interstitial

CBG-interstitial

Relative humidity (%)
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Aerosol Sampling
Aerosol 
stack

Flow
splitter

Nephelometers and 
humidograph system
Scattering, backscattering, 
hygroscopicity (f(RH))

PSAP and CPC
Absorption and NCN

Aerosol chemistry
Inorganic ions and organics

Cloud condensation 
nuclei counter
NCCN as f(SS)

Aerosol size 
distribution

inlet
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aerosol single- 
scattering albedo

average aerosol 
up-scatter fraction
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Source:  Haywood and Shine (1995)

ΔF average aerosol forcing at 
top of atmosphere (TOA)

δ

 

aerosol optical depth

ΔF/δ = Radiative Forcing Efficiency
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•How do clouds change the optical properties of the aerosol?

•What are the implications for radiative forcing?

Scientific Questions

ALT
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MLO
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Aerosol Hygroscopicity f(RH)

f(RH) = σsp,high =   100-RHlow
σsp,low 100-RHhigh
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The systematic variability may be due to aerosol type
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Airborne measurements over Oklahoma 
(March 2000-November 2007)

Single scattering albedoExtinction (Mm-1)
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Surface, dp<1um
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Interdependence of SSA and particle size
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Scattering efficiency falls off faster with decreasing 
size than absorption efficiency.

for a given composition, particle albedo is a 
function of size

Systematic relationship between SSA and BFR
absorbing particles tend to be ‘small’ e.g., soot
SSA related to proportion of smaller aerosol
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More CCN with less organic carbon…usually!

Chebogue Point had two different airmasses 
with different relationship between organic 
carbon and CCN.
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CCN activation properties at Holme Moss

•activated fraction highly variable
•100% activation never observed
•Compositional dependence?

0

0.2

0.4

0.6

0.8

315 317 319 321 323 325

SS~0.18 SS~0.60 SS~1.43

DOY (315=November 11, 2006)

A
ct

iv
at

ed
 F

ra
ct

io
n

No OC All OC

Activated fraction=CCN
CN



E. Andrews  1/31/2008

The preferential scavenging of scattering aerosol by clouds may 
explain the relatively long lifetime and ubiquity of absorbing 
aerosol in the atmosphere.

Implications for global aerosol optical properties 

Smoke from the 2004 Alaskan forest 
fires was detected in Norway and 
Greenland a month after emission:

Relatively dark aerosol (i.e., low single 
scattering albedo) is observed in some 
remote locations (e.g., aerosol aloft, 
Arctic haze)

Single scattering albedo
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~600 flights, dp<1um
Surface, dp<1um

Darker aerosol

Station Episode max. Summer Haze Annual
Barrow abs     34.0 0.05 0.44 0.17 
Alert abs 0.71         - 0.36     0.17
Norway abs   0.63 0.05       0.47     0.11 
Greenl. EBC   828          20.2      12.8     14.5  

From Stohl et al., 2006
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Light Extinction
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Single Scattering Albedo
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Site Campaign When Aerosol type
ARE SOACED Summer, 2004 Arctic air, remote continental
CBG ICARTT Summer, 2004 Aged urban
HLM n/a Winter, 2006 Aged urban, biomass burning
PYE MASRAD Summer, 2005 Clean marine

ARECBG HLM PYE
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Backscatter fraction

Backscattering fraction = backscattering
total scattering
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Backscatter fraction can be used to estimate other parameterizations 
of angular dependence of light scattering, e.g., upscatter fraction and 
asymmetry parameter.

ARECBG HLM PYE
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