

NOAA Climate Research Goal: Stratospheric Ozone and Radiative Forcing

Montreal Protocol: A Plan to Phase-out Ozone Depleting Substances

(Lifetime)

Industry: Identify Suitable Replacements

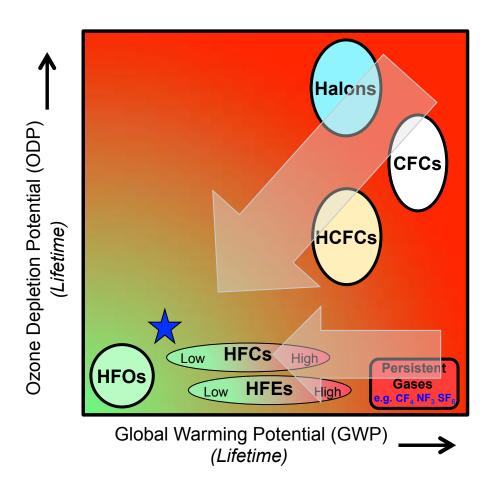
Key Metrics for Suitability

Ozone Depletion Potential (ODP)

Global Warming Potential (GWP)

Depend on Substances Atmospheric Lifetime

CSD Laboratory Studies Provide Atmospheric Lifetime Information


Loss Processes Reaction Rates (OH, O(¹D), CI, ...) UV Photolysis Rates

Study elementary chemical processes relevant to Earth's atmosphere under well-controlled conditions

NOAAs Climate Research Goal: Stratospheric Ozone and Radiative Forcing

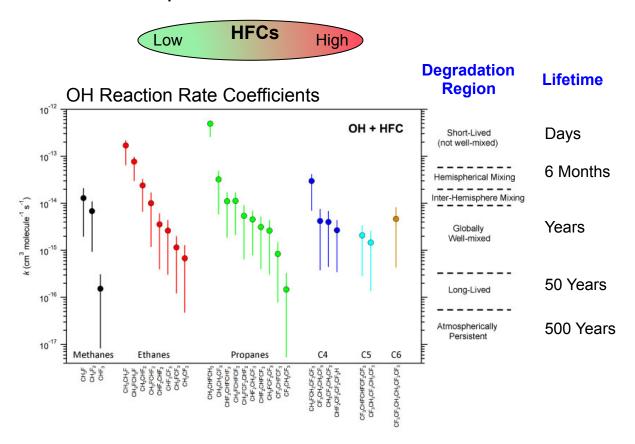
CSD Laboratory Independent Broker of Information

- * Expertise
- * Technical Capability
- * Identify Relevant Species and Chemical Processes

Stakeholders

Industry Regulatory Agencies

Assessments (e.g. WMO, IPCC)


Laboratory Data Evaluations
Atmospheric Models (*forecasts*)

Laboratory Studies → Modeling → Improved Understanding: Projections/Impacts → Policy (Protocols)

Not all compounds in a Class behave the same

Informed Research

Industry
Regulatory Agencies
Field observations
Assessments
Experience

Collaborators Industry/Academic/Gov't

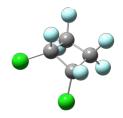
NOAA/CSD: modeling
NASA/Goddard modeling
NOAA/GMD
AGAGE network/MIT/EMPA
Scripps Res. Inst.

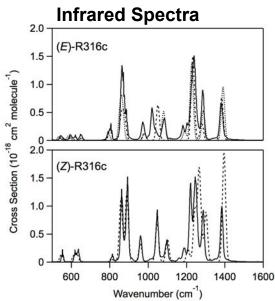
DuPont

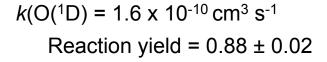
Honeywell

Laboratory Measurements Tailored to the Compound

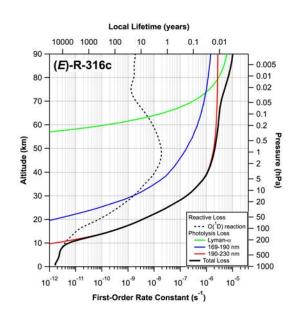
- * Not all compounds require the same laboratory measurements
- * A complete study ~4-6 months
- * Informed decisions on systems to study required

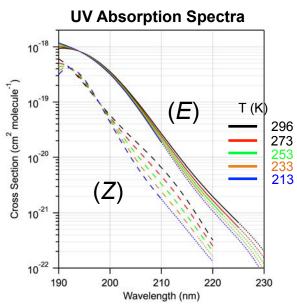

NOAA Laboratory Capabilities: Poster and Lab Tour





Example: R-316c, $1,2-C_4Cl_2F_6$ (*E,Z*)



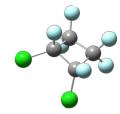


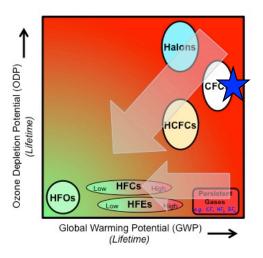
* Potent GHG

R-316c
$$\rightarrow$$
 c-C₄F₆
O(¹D) and hv
High yield product

- * Photolysis is primary loss process
- * Quantum yield = 1 (2 Cl atoms)

Removal in the Stratosphere


2-D model (NASA/Goddard)



Example: R-316c, $1,2-C_4Cl_2F_6$ (*E,Z*)

Laboratory Results Summary

Lifetime (yrs)	(<i>E</i>) 75	(<i>Z</i>) 114	High
ODP	0.46	0.54	High
GWP (100)	4160	5400	High

R-316c withdrawn from consideration

- Laboratory studies provide critical policy relevant information
- * CSD Laboratory Enables: Timely study capability

Poster: Summary of Other Studies (>25 ODS and replacement compound studies)

Future Directions/Issues

Poster

New Compounds

High molecular wt. fluoro-amines proposed: Long-lived GHGs

Chlorinated and brominated HFOs (e.g. HFO-1233zd, CF₃CH=CHCl)

Mixtures of Compounds:

Isomers

Minor components may be most important

Degradation Mechanisms

Accumulating degradation products

Identification of minor, but long-lived, degradation products

Policy Issues

Environmental impacts of short-lived compounds: ODP/GWP/Regional Air Quality

5 Min Presentation and Poster: Jim Roberts, Tuesday